
Covering Numbers

Definition Let (A, d) be a metric space. Given W ⇢ A and a positive number ✏,
a subset C ⇢ W is called a ✏-cover of W if for any w 2 W , there is c 2 C such
that d(w , c) < ✏.

Definition A ✏-covering number of W denoted by N (✏,W , d), is the minimal
cardinality of an ✏-cover of W .

Definition Let F be a set of functions from a domain X and let k be a positive
integer. An uniform ✏-covering number is defined as

N1(✏,F , k) = max{N (✏,F|x , d1) : x 2 X k}.



The Pseudo Dimension

Definition 11.1 Let F be a set of real-valued functions mapping from a domain
X and suppose that S = {x

1

, x
2

, . . . , x
m

} ✓ X . Then S is pseudo-shattered by F
if there are real number r

1

, r
2

, . . . , r
m

such that for each b 2 {0, 1}m there is a
function f

b

2 F with sign(f
b

(x
i

)� r
i

) = b
i

for 1  i  m. We say that
r = (r

1

, r
2

, . . . , r
m

) witnesses the shattering.

Definition 11.2 Suppose that F is a set of real-valued functions mapping from a
domain X . Then F has pseudo-dimension d if d is the maximum cardinality of a
subset S of X that is pseudo-shattered by F . If no such maximum exists, we say
that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted
Pdim(F ).



The Fat-Shattering Dimension

Definition 11.10 Let F be a set of real-valued functions mapping from a domain
X and suppose that S = {x

1

, x
2

, . . . , x
m

} ✓ X . Suppose also that � is a positive
real number. Then S is �-shattered by F if there are real numbers r

1

, r
2

, . . . , r
m

such that for each b 2 {0, 1}m there is a function f
b

2 F with

f
b

(x
i

) � r
i

+ � if b
i

= 1, f
b

(x
i

)  r
i

� � if b
i

= 0, for 1  i  m.

Definition 11.11 Suppose that F is a set of real-valued functions mapping from
a domain X and that � > 0. Then F has �-dimension d if d is the maximum
cardinality of a subset S of X that is �-shattered by F . If no such maximum
exists, we say that F has infinite �-dimension. The �-dimension of F is denoted
fat

F

(�).



Relating Fat-Shattering Dimension and Pseudo-Dimension

Theorem 11.13 Suppose that F is a set of real-valued functions. Then,

1 For all � > 0, fat
F

(�)  Pdim(F ).

2 If a finite set S is pseudo-shattered then there is �
0

such that for all � < �
0

,
S is �-shattered.

3 The function fat
F

(�) is non-increasing with �.

4 Pdim(F ) = lim�#0 fatF (�) (where both sides may be infinite).
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Large Margin SEM Algorithms

• In analyzing classification learning algorithms for real-valued function classes,
it is useful to consider algorithms that, given a sample and a parameter
� > 0, return hypotheses minimizing the sample error with respect to �,
which is defined as

êr�
z

(f ) =
1

m
|{i : margin(f (x

i

), y
i

) < �}|

where

margin(f (x
i

), y
i

) =

⇢

f (x
i

)� 1/2 if y
i

= 1
1/2� f (x

i

) if y
i

= 0



Large Margin SEM Algorithms

Definition 13.1 Suppose that F is a set of real functions defined on the domain
X . Then a large margin sample error minimization algorithm (or large margin
SEM algorithm) L for F takes as input a margin parameter � > 0 and a sample
z 2

S1
m=1

Zm, and returns a function from F such that for all � > 0, all m, and
all z 2 Zm,

êr�
z

(L(�, z)) = min
f2F

êr�
z

(f ).



Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.2 Suppose that F is a set of real-valued functions defined on the
domain X and that L is a large margin SEM algorithm for F . Suppose that
✏ 2 (0, 1) and � > 0. Then given any probability distribution P on Z for all m,
we have

Pm{er
P

(L(�, z)) � opt�
P

(F ) + ✏}  2N1(�/2,⇡�(F ), 2m)e�✏m/72 + e�2✏2m/9,

where opt�
P

(F ) = inf
f2F

er�
P

(f ).



Bounding Covering Number with the Pseudo-Dimension

Theorem 12.2 Let F be a set of real-valued functions from a domain X to the
bounded interval [0,B]. Let d be a pseudo-dimension of F . Then for any ✏ > 0,

N1(✏,F ,m) 
d

X

i=1

✓

m

i

◆✓

B

✏

◆

i

which is less than (emB/(✏d))d for m � d .



Bounding Covering Number with the Fat Shattering Dimension:

A general upper bound

Theorem 12.8 Let F be a set of functions from a domain X to the bounded
interval [0,B]. Let d = fat

F

(✏/4). Then any ✏ > 0 and for all m � d

N1(✏,F ,m) < 2

✓

4mB2

✏2

◆

d log

2

(4eBm/(d✏))

.



Bounding Covering Number with the Fat Shattering Dimension:

A general lower bound

Theorem 12.10 Let F be a set of real-valued functions and let ✏ > 0. Let
d = fat

F

(✏/4). Then for all m � fat
F

(16✏),

N1(✏,F ,m) � N
1

(✏,F ,m) � e fatF (16✏)/8.



Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.4 Suppose that F is a set of real-valued functions defined on the
domain X with finite fat-shattering dimension, and that L is a large margin SEM
algorithm for F . Then L is a classification learning algorithm for F . Given
� 2 (0, 1) and � > 0, suppose d = fat⇡�(F )

(�/8) � 1. Then the estimation error
of L satisfies

✏
L

(m, �, �) 


72

m

⇢

d log
2

✓

32em

d

◆

log(128m) + log

✓

6

�

◆��

1/2

Furthermore, the sample complexity of L satisfies, for any ✏ 2 (0, 1),

m
L

(✏, �, �)  144

✏2

✓

27d log2
✓

3456d

✏2

◆

+ log

✓

6

�

◆◆

.



Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.6 If F is a set of real-valued functions with finite pseudo-dimension,
and L is a large margin SEM algorithm for F . Let d = Pdim(F ). For all
� 2 (0, 1), all M, and � > 0, its estimation error satisfies

✏
L

(m, �, �) 


72

m

⇢

d log

✓

8em

d

◆

+ log

✓

3

�

◆��

1/2

.
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Pseudo-dimension of neural networks

Theorem 14.1 Let N be any neural network with a single real-valued output
unit, and form a neural network N 0 as follows.

The network N 0 has one extra input unit and one extra computation unit. The
extra computation unit is a linear threshold unit receiving input from output unit
of N and the new input unit. If H 0 is the set of {0, 1}-value functions computed
by N 0 and F the set of functions computed by N, then

Pdim(F )  VCdim(H 0).

Proof of Theorem 14.1 Use the fact that Pdim(F ) = VCdim(B
F

) where

B
F

= {(x , y) 7! sgn(f (x)� y) : f 2 F}



Pseudo-dimension of neural networks

Theorem 14.2 Let F be the set of functions computed by a feed-forward
network with W parameters and k computation units, in which each computation
unit has the standard sigmoid activation function. Then,

Pdim(F )  ((W + 2)k)2 + 11(W + 2)k log
2

(18(W + 2)k2).

RECALL

Theorem 8.13 Let H be the set of functions computed by a feed-forward
network with W parameters and k computation units, in which each computation
unit other than the output unit has the standard sigmoid activation function (the
output unit being a linear threshold unit). Then, provided m � W ,

VCdim(H)  (Wk)2 + 11Wk log
2

(18Wk2)



Bounds of fat-shattering dimension

in terms of number of parameters W

• Split the network into two parts: the 1st layer & later layers.

• Let X be the input space Rn, Y
1

be the output set of the 1st layer (ex. Rk).

• Let F
1

: X �! Y
1

be the class of vector valued functions computed by the
1st layer, and G : Y

1

�! R be the class of functions computed by the
remainder of the network.

• Then the set of functions computable by the whole network is

G � F
1

= {g � f : g 2 G , f 2 F
1

}



Bounds of fat-shattering dimension

in terms of number of parameters W

Definition Define the uniform, L1 distance between functions h, g 2 G as

d
L1(g , h) = sup

y2Y

1

|g(y)� h(y)|.

lemma 14.3 Let X be a set and (Y
1

, ⇢) be a metric space. Supp. L � 0, F
1

is a
class of functions mapping from X to Y

1

, G is a class of functions mapping from
Y
1

to R, satisfying Lipschitz condition: for all g 2 G and all y , z 2 Y
1

,

|g(y)� g(z)|  L⇢(y , z).

For y = (y
1

, · · · , y
m

) and z = (z
1

, · · · , z
m

) from Ym

1

, let

d⇢
1(y , z) = max

1im

⇢(y
i

, z
i

).

Then,

N1(",G � F ,m)  max
x2X

m

N
⇣

"/2L,F
1

|
x

, d⇢
1

⌘

N
⇣

"/2,G , d
L1

⌘

.



Proof of lemma 14.3

Proof of lemma 14.3 Fix x 2 Xm. Supp. that F̂
1

is an "
2L

-cover of F
1

|
x

w.r.t.

d⇢
1 and Ĝ is an "

2

-cover of G w.r.t. to d
L1 . Let

Ĝ |
ˆ

F

1

= {(ĝ(f̂
1

), · · · , ĝ(f̂
m

)) : f̂ = (f̂
1

, · · · , f̂
m

) 2 F̂
1

, ĝ 2 Ĝ}.

Then we can show Ĝ |
ˆ

F

1

is an "-cover of (G � F )|
x

w.r.t. to d1.

Choose f 2 F
1

and g 2 G , and pick f̂ 2 F̂
1

and ĝ 2 Ĝ s.t.

d⇢
1(f |

x

, f̂ )  "

2L
and d

L1(g , ĝ)  "

2
.

Then,

max
1im

⇢(f (x
i

), f̂
i

)  "

2L

and so,

max
1im

⇣

g(f (x
i

))� g(f̂
i

)
⌘

 L · "

2L
=

"

2

due to Lipschitz condition, which implies

max
1im

|g(f (x
i

))� ĝ(f̂
i

)|  ".



Bounds of fat-shattering dimension

in terms of number of parameters W

Consider F computed by a feed-forward real-output multi-layer network, with
following properties:

• l � 2 layers, with connections only between adjacent layers

• W weights

• For some b > 0, each computation unit maps into [�b, b], and each
computation unit in the 1st layer has non-dicreasing activation function.

• 9V > 0 and L > 1

V

s.t. for each unit in all but 1st layer, vector w of weight
associated with that unit has ||w ||

1

 V and the unit’s activation function
s : R �! [�b, b] satisfies Lipschitz condition |s(↵

1

)� s(↵
2

)|  L|↵
1

� ↵
2

|
for all entries ↵

1

,↵
2

2 R.
• Assume no threshold, for convenience.

Theorem 14.5 For the class F of functions computed by the network above, if
"  2b, then

N1(",F ,m) 
⇣4embW (LV )l

"(LV � 1)

⌘

W

.



Proof of Theorem 14.5 I

Proof of Theorem 14.5 Use lemma 14.3 !!

1 Functions in G satisfy Lipschitz condition.

lemma For every g 2 G and y
1

, y
2

2 Y
1

,

|g(y
1

)� g(y
2

)|  (LV )l�1||y
1

� y
2

||1.

proof Decompose g = g
l

� · · · � g
2

and use Lipschitz condition on s.

||g
i

(y
1

)� g
i

(y
2

)||1  Lmax |wT (y
1

� y
2

)|
 Lmax{||w ||

1

||y
1

� y
2

||1}
= LV ||y

1

� y
2

||1,

where y
1

and y
2

are units in layer i .



Proof of Theorem 14.5 II

2 Bound on N(",F
1

|
x

, d⇢
1).

lemma For x 2 Xm,

N(",F
1

|
x

, d⇢
1) 

⇣2emb

"

⌘

W�W

G

,

where W
G

is the number of weights in all but 1st layer.
proof

For f 2 F
1

, we can write f (x) = (f
1

(x), · · · , f
k

(x)) 2 [�b, b]k .
Define F

1,j = {f
j

: (f
1

, · · · , f
k

) 2 F
1

}. Then F
1

|
x

⇢ F
1,1|x ⇥ · · ·⇥ F

1,k |x .

) N(",F
1

|
x

, d⇢
1) 

k

Y

j=1

N(",F
1,j |x , d1)

Supp. X ⇢ Rn. Since the activation function of each 1st layer unit is
non-decreasing,

max
x2X

m

N(",F
1,j |x , d1) 

⇣2emb

"n

⌘

n

due to Thm 11.3, 11.6 and 12.2. Result follows from kn = W �W
G

.



Proof of Theorem 14.5 III

3 Bound on N(",G , d
L1).

lemma If "  2b and LV > 1,

N(",G , d
L1) 

⇣2LVW
G

b(LV )l�1

"(LV � 1)

⌘

W

G



Bounds of fat-shattering dimension

in terms of number of parameters W

Theorem 14.9 For the class F of functions computed by the network described
above,

fat
F

(")  16W
⇣

l log(LV ) + 2log(32W ) + log

� b

"(LV � 1)

�

⌘

Proof of Theorem 14.9 Use Theorem 14.5 and Theorem 12.10
RECALL
Theorem 12.10 Let F be a set of real-valued functions and let ✏ > 0. Let
d = fat

F

(✏/4). Then for all m � fat
F

(16✏),

N1(✏,F ,m) � N
1

(✏,F ,m) � e fatF (16✏)/8.



Bounds of fat-shattering dimension

in terms of size of parameters V

Key idea is to approximate a network with bounded weights by one with few
weights!



Bounds of fat-shattering dimension

in terms of size of parameters V

Definition For a subset S of a vector space H, the convex hull of S , co(S) ⇢ H,
is defined as

co(S) =
n

N

X

i=1

↵
i

s
i

: N 2 N, s
i

2 S ,↵
i

> 0,
N

X

i=1

↵
i

= 1
o

Theorem 14.10 Let F be a vector space with a scalar product and let
||f || =

p

(f , f ). Supp. G ⇢ F and that for some B > 0, ||g ||  B for all g 2 G .
Then for all f 2 co(G ), all k 2 N, and all c > B2 � ||f ||2, 9g

1

, · · · , g
k

2 G
satisfying

|| 1
k

k

X

i=1

g
i

� f ||2  c

k
.



Bounds of fat-shattering dimension

in terms of size of parameters V

Theorem 14.11 Supp. b > 0 and that F is a class of [�b, b]-valued functions
defined on X , and N

2

(",F ,m) is finite for all m 2 N and " > 0. Then provided
"
1

+ "
2

 ",

log

2

N
2

(", co(F ),m)  db
2

"2
1

elog
2

N
2

("
2

,F ,m)



Proof of Theorem 14.11 I

Proof of Theorem 14.11 Take N
2

("
2

,F ,m) = N. Then for any x 2 Xm,
9"

2

-cover S of F |
x

s.t. |S | = N.
Define T

k

⇢ Rm as

T
k

= { 1
k

k

X

i=1

s
i

: s
i

2 S}.

Then |T
k

|  Nk . Choose any f 2 co(F ) and suppose f =
P

l

i=1

↵
i

f
i

with ↵
i

> 0,
P

l

i=1

↵
i

= 1 and f
i

2 F .

Since S is an "
2

-cover of F |
x

, 9f̂
1

, · · · , f̂
l

2 S s.t.

d
2

(f
i

|
x

, f̂
i

)  "
2

.

) d
2

(f |x ,
l

X

i=1

↵
i

f̂
i

)  "
2

.

By Theorem 14.10, 9g
1

, · · · , g
k

2 S s.t.

d
2

(
1

k

k

X

i=1

g
i

,
l

X

i=1

↵
i

f̂
i

)  bp
k
.



Proof of Theorem 14.11 II

By triangle inequality,

d
2

(
1

k

k

X

i=1

g
i

, f |
x

)  "
2

+
bp
k
.

Hence, T
k

is an ("
2

+ bp
k

)-cover of co(F )|
x

. Choose k = d b

2

"2
1

e.



Bounds of fat-shattering dimension

in terms of size of parameters V

lemma 14.12 If G is a normed vector sapce with induced metric d and F ⇢ G ,
then

N(",F , d) = N(|↵|",↵F , d)

for 8" > 0 and ↵ 2 R.

lemma 14.13 Suppose F is a class of real-valued functions defined on X , and
the function � : R �! R satisfies the Lipschitz condition,

|�(x)� �(y)|  L|x � y |

for all x , y 2 R. Then,

N
2

(",� � F ,m)  N
2

("/L,F ,m).

Proof Use the fact

|(� � f )(x)� (� � g)(x)|  L|f (x)� g(x)|



Bounds of fat-shattering dimension

in terms of size of parameters V

Theorem 14.14 Suppose b > 0 and that F
1

is a class of [�b, b]-valued functions
defined on a set X and satisfying

• F
1

= �F
1

• F
1

contains the identically zero function

For V � 1, define,

F = {
N

X

i=1

w
i

f
i

: N 2 N, f
i

2 F
1

,
N

X

i=1

|w
i

|  V }.

Then for "
1

+ "
2

< ",

log
2

N
2

(",F ,m)  dV
2b2

"2
1

elog
2

N
2

("
2

/V ,F
1

,m).



Proof of Theorem 14.14

Proof of Theorem 14.14 Due to conditions on F
1

,

N

X

i=1

w
i

f
i

=
N

X

i=1

w
i

sgn(w
i

)sgn(w
i

)f
i

=
N

X

i=1

w
i

sgn(w
i

)

V
Vsgn(w

i

)f
i

= V
h

N

X

i=1

w
i

sgn(w
i

)

V
sgn(w

i

)f
i

+ (1�
N

X

i=1

w
i

sgn(w
i

)

V
)0
i

) F = Vco(F
1

)
Result follows from Theorem 14.11 and lemma 14.12.



Bounds of fat-shattering dimension

in terms of size of parameters V

Two corollaries for bound on N
2

(·, ·, ·) of 2-layer neural networks.

Corollary 14.15 Suppose that b > 0 and s : R �! [�b, b] is a nondecreasing
function. Let V � 1 and supp. that F is the class of functions from Rn to R,

F = {x 7!
N

X

i=1

w
i

s(vT

i

x + v
i0

) + w
0

: N 2 N, v
i

2 Rn, v
i0

2 R,
N

X

i=0

|w
i

|  V }

Then for 0 < "  b and m � n + 1,

log

2

N
2

(",F ,m)  5V 2b2(n + 3)

"2
log

2

⇣ 4embV

"(n + 1)

⌘



Proof of Corollary 14.15

Proof of Corollary 14.15 Let

F
1

= {x 7! s(vT

i

x + v
i0

)}.

Then

N
2

(",F
1

,m)  N1(",F
1

,m) 
⇣ 2emb

"(n + 1)

⌘

n+1

for m � n + 1.
By lemma 14.12, N

2

(",�F
1

,m) = N
2

(",F
1

,m), so

N
2

(",F
1

U � F
1

U{0, 1},m)  2N
2

(",F
1

,m) + 2.

By Theorem 14.14,

log
2

N
2

(",F ,m)  dV
2b2

"2
1

elog
2

⇣

2N
2

(",F
1

,m) + 2
⌘



Bounds of fat-shattering dimension

in terms of size of parameters V

Corollary 14.16 Suppose that b > 0, L > 0 and s : R �! [�b, b] satisfies
|s(↵

1

)� s(↵
2

)|  L|↵
1

� ↵
2

| for all ↵
1

,↵
2

2 R.
For V � 1 and B � 1, let

F = {
N

X

i=1

w
i

f
i

+ w
0

: N 2 N, f
i

2 F
1

,
N

X

i=1

|w
i

|  V }

where

F
1

= {x 7! s(
n

X

i=1

v
i

x
i

+ v
0

) : v
i

2 R, x 2 [�B ,B]n,
n

X

i=0

|v
i

|  V }

Then, for "  Vmin{BL, b},

log
2

N
2

(",F ,m)  50
⇣V 3L2bB

"

⌘

2

log
2

(2n + 2).



Proof of Corollary 14.16

Proof of Corollary 14.16 By Theorem 14.14 and lemma 14.13,

log
2

N
2

(",F
1

,m)  dV
2B2L2

"2
1

elog
2

N
2

("
2

/VL,GU � GU{0, 1},m)

 dV
2B2L2

"2
1

elog
2

⇣

2N
2

("
2

/VL,G ,m) + 2
⌘

 dV
2B2L2

"2
1

elog
2

(2n + 2)

where G = {x 7! x
i

: i 2 {1, · · · , n}}, "
1

+ "
2

� ".
Similarly, if b � 1,

log
2

N
2

(",F ,m)  dV
2b2

"2
1

elog
2

⇣

2N
2

("
2

/V ,F
1

,m) + 2
⌘

for "
1

+ "
2

 ".



Bounds of fat-shattering dimension

in terms of size of parameters V

Let

F
0

= {x 7! x
i

: x = (x
1

, · · · , x
n

) 2 [�b, b]n, i 2 {1, · · · , n}} U {0, 1},

and for i � 1,

F
i

= {s(
N

X

j=1

w
j

f
j

) : N 2 N, f
j

2 [i�1

k=0

F
k

,
N

X

j=1

|w
j

|  V }.

Thus, F
l

is the class of functions that can be computed by an l�layer
feed-forward network, in which each unit has sum of magnitude of weights
bounded by V .
Assume s : R �! [�b, b] satisfies Lipschitz condition.

Theorem 14.17 For l � 1,

log
2

N
2

(",F
l

,m)  1

2
(
2b

"
)2l(2VL)l(l+1)log

2

(2n + 2),

provided b � 1, V � 1

2L

, "  VbL.



Bounds of fat-shattering dimension

in terms of size of parameters V

Theorem 14.19

fat
F

l

(")  4(
32b

"
)2l(2VL)l(l+1)log(2n + 2)

provided b � 1, V � 1

2L

, "  16VbL.

Proof Theorem 14.17 and Theorem 12.10

Theorem 14.18 Suppose b � 1 and s : R �! [�b, b] is a non-decreasing
function. Let V � 1 and supp. that

F = {x 7!
N

X

i=1

w
i

s(vT

i

x + v
i0

) + w
0

: N 2 N, v
i

2 Rn, v
i0

2 R,
N

X

i=0

|w
i

|  V }

Then for 0 < "  b,

fat
F

(")  216(n + 3)(
bV

"
)2log(

28bV

"
)

Proof Corollary 14.15 and Theorem 12.10
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Model Selection

The first two parts of the book considered the following 3 step approach to
solving a pattern classification problem.

1 Choose a suitable class of functions.

2 Gather data

3 Choose a function from the class.



Model Selection

Theorem 15.1 Let N
W

be a 2-layer network with input set X , W parameters, a
linear threshold output unit, and first-layer units with a fixed bounded
piecewise-linear activation function. Let H

W

be the class of functions computed
by N

W

. There is a constant c such that the following holds.
Suppose P is a probability distribution on X ⇥ {0, 1}, and z 2 Zm is chosen from
Pm. Then if L

W

is a SEM algorithm for H
W

, wp at leat 1� �,

er
P

(L
W

(z)) < opt
P

(H
W

) +
⇣ c

m

⇣

Wlog(Wm) + log(
1

�
)
⌘⌘

1/2
.

Proof Theorem 8.8, Theorem 4.3, and Thoerem 4.2.

REMARK This result is applicable only if we fix the complexity of our class, W ,
before seeing any data.
) Rather, we want that the learner chooses a suitable W after seeing the data.



Model Selection

Theorem 15.2 Let F
V

be class of functions computed by a two-layer network,

F
V

= {x 7!
k

X

i=1

w
i

s(vT

i

x + v
i0

) + w
0

: k 2 N,
k

X

i=0

|w
i

|  V },

where V > 0, x 2 Rn, and s : R �! [�1, 1] is non-decreasing. There is a
constant c such that the following holds.
Fix � 2 (0, 1] and suppose that P is a probability distribution on X ⇥ {0, 1}, and
that z 2 Zm is chosen from Pm. Then, if L

V

is a large margin SEM algorithm for
F
V

, wp at least 1� �,

er
P

(L
V

(z , �)) < opt�
P

(F
V

) +
⇣ c

m

⇣V 2n

�2

log2(m)log(
V

�
) + log(

1

�
)
⌘⌘

1/2

Proof Thoerem 14.18, Thoerem 13.2, and Thoerem 13.4.

REMARK Increasing � decreases the estimation error term, but may increase the
error term.



Model Selection

We want to choose the complexity parameters so as to minimize the upperbounds
on misclassification probability.



Model Selection

Let Lc be a learning algorithm that returns h 2 [
W

H
W

, corresponding to a pair
(h,W ) with h 2 H

W

, that minimizes

êr
z

(h) +
⇣ c

m

⇣

Wlog(Wm) + log(
W

�
)
⌘⌘

1/2
,

over all values of W 2 N and h 2 H
W

.

Theorem 15.3 There are constants c , c
1

such that wp at least 1� �,

er
P

(Lc(z)) < inf
W

⇣

opt
P

(H
W

) +
⇣c

1

m

⇣

Wlog(Wm) + log(
W

�
)
⌘⌘

1/2⌘

.



Model Selection

Let Lc be a learning algorithm that returns f 2 [
V

F
V

corresponding to a triple
(f ,V , �) with f 2 F

V

and

êr�
z

(f ) +
⇣ c

m

⇣V 2n

�2

log2(m)log(
V

�
) + log(

V

��
)
⌘⌘

1/2

within 1/m of its infimum over all values � 2 (0, 1], V 2 R+ and f 2 F
V

.

Thoerem 15.4 There are constants c , c
1

such that wp at least 1� �,

er
P

(Lc(z)) < inf
V ,�

⇣

opt�
P

(F
V

) +
⇣c

1

m

⇣V 2n

�2

log2(m)log(
V

�
) + log(

V

��
)
⌘⌘

1/2⌘



Model Selection: Remarks

• The model selection methods described in this chapter are similar to number
of thechniques that are commonly used by neural network practitioners.

• Thoerem 15.6 �! weight decay
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