Covering Numbers

Definition Let (A, d) be a metric space. Given W C A and a positive number ¢,
a subset C C W is called a e-cover of W if for any w € W, there is ¢ € C such
that d(w, c) < e.

Definition A e-covering number of W denoted by N(e, W, d), is the minimal
cardinality of an e-cover of W.

Definition Let F be a set of functions from a domain X and let k be a positive
integer. An uniform e-covering number is defined as

Noo(e, Fo k) = max{N (e, Fx, dx) : x € X¥}.



The Pseudo Dimension

Definition 11.1 Let F be a set of real-valued functions mapping from a domain
X and suppose that S = {x1,x,...,xn} C X. Then S is pseudo-shattered by F

if there are real number r1, o, ..., ry such that for each b € {0,1}™ there is a
function f, € F with sign(fp(x;) — r;) = b; for 1 < i < m. We say that
r=1(n,r,...,rm) witnesses the shattering.

Definition 11.2 Suppose that F is a set of real-valued functions mapping from a
domain X. Then F has pseudo-dimension d if d is the maximum cardinality of a
subset S of X that is pseudo-shattered by F. If no such maximum exists, we say
that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted
Pdim(F).



The Fat-Shattering Dimension

Definition 11.10 Let F be a set of real-valued functions mapping from a domain
X and suppose that S = {x1, x2,...,xm} C X. Suppose also that ~ is a positive
real number. Then S is y-shattered by F if there are real numbers r1, 2, ..., rm
such that for each b € {0,1}™ there is a function f, € F with

fb(X,')ZF,'-I-’}/ifb,':l, fb(X,')Sr,'—’yifb;:O, for1<i<m.

Definition 11.11 Suppose that F is a set of real-valued functions mapping from
a domain X and that v > 0. Then F has y-dimension d if d is the maximum
cardinality of a subset S of X that is y-shattered by F. If no such maximum
exists, we say that F has infinite y-dimension. The ~-dimension of F is denoted

fat/:(’}/).



Relating Fat-Shattering Dimension and Pseudo-Dimension

Theorem 11.13 Suppose that F is a set of real-valued functions. Then,
@ For all v > 0, fate(y) < Pdim(F).

@® If a finite set S is pseudo-shattered then there is vy such that for all v < 7o,
S is 7y-shattered.

@© The function fatg(7) is non-increasing with ~.
@ Pdim(F) = lim, o fate(7) (where both sides may be infinite).



Martin Anthony and Peter L. Bartlett

Gi-Soo Kim
September 2 , 2017
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Large Margin SEM Algorithms

e |n analyzing classification learning algorithms for real-valued function classes,
it is useful to consider algorithms that, given a sample and a parameter
v > 0, return hypotheses minimizing the sample error with respect to v,
which is defined as

&1(F) = {7+ margin(£(x). ) < 7}

where ; c
. Xj) — 1/2 i i = 1
margin(f(x;), yi) = { 152)_ f(){,) if ;. -0



Definition 13.1 Suppose that F is a set of real functions defined on the domain
X. Then a large margin sample error minimization algorithm (or large margin
SEM algorithm) L for F takes as input a margin parameter v > 0 and a sample
ze Uy, Z™, and returns a function from F such that for all v > 0, all m, and
allze Z™,

&Y — miné&rY
ér2(L(v, 2)) = minérz(f).
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Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.2 Suppose that F is a set of real-valued functions defined on the
domain X and that L is a large margin SEM algorithm for F. Suppose that

€ € (0,1) and v > 0. Then given any probability distribution P on Z for all m,
we have

P™{erp(L(y,2)) > opth(F) + €} < 2Noe(7/2, 7 (F). 2m)e™<"/72 4 e=2<m/9,

where opt}(F) = infreperb(f).



Theorem 12.2 Let F be a set of real-valued functions from a domain X to the
bounded interval [0, B]. Let d be a pseudo-dimension of F. Then for any € > 0,

Noo(e, F,m) < 2:1: (rln) (g)i

which is less than (emB/(ed))? for m > d.

DA



Theorem 12.8 Let F be a set of functions from a domain X to the bounded
interval [0, B]. Let d = fatg(e/4). Then any € > 0 and for all m > d

4mB2 d log,(4eBm/(de))
Noo(e,F,m)<2( - )
€
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Theorem 12.10 Let F be a set of real-valued functions and let € > 0. Let
d = fatp(e/4). Then for all m > fatg(16¢),

Nao(e, F,m) > Ni(e, F, m) > eftr(169)/8
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Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.4 Suppose that F is a set of real-valued functions defined on the
domain X with finite fat-shattering dimension, and that L is a large margin SEM
algorithm for F. Then L is a classification learning algorithm for F. Given

6 €(0,1) and v > 0, suppose d = fat,_ (r)(7/8) > 1. Then the estimation error
of L satisfies

eL(m,d,7) < {7 {dlo 2<32d )Iog(128m) log (g) Hl/z

Furthermore, the sample complexity of L satisfies, for any € € (0,1),

iy < 4 (o (%59 g (%))




Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.6 If F is a set of real-valued functions with finite pseudo-dimension,
and L is a large margin SEM algorithm for F. Let d = Pdim(F). For all
0 €(0,1), all M, and > 0, its estimation error satisfies

atmio < [2 (oo () 1o ()]
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Pseudo-dimension of neural networks

Theorem 14.1 Let N be any neural network with a single real-valued output
unit, and form a neural network N’ as follows.

h(z,y)

The network N’ has one extra input unit and one extra computation unit. The
extra computation unit is a linear threshold unit receiving input from output unit
of N and the new input unit. If H' is the set of {0, 1}-value functions computed
by N and F the set of functions computed by N, then

Pdim(F) < VCdim(H').
Proof of Theorem 14.1 Use the fact that Pdim(F) = VCdim(Bf) where

Br = {(x,y) > sgn(f(x) —y): f € F}



Pseudo-dimension of neural networks

Theorem 14.2 Let F be the set of functions computed by a feed-forward
network with W parameters and k computation units, in which each computation
unit has the standard sigmoid activation function. Then,

Pdim(F) < ((W + 2)k)? + 11(W + 2)klog,(18(W + 2)k?).

RECALL

Theorem 8.13 Let H be the set of functions computed by a feed-forward
network with W parameters and k computation units, in which each computation
unit other than the output unit has the standard sigmoid activation function (the
output unit being a linear threshold unit). Then, provided m > W,

VCdim(H) < (Wk)? + 11Wklog, (18 Wk?)



Bounds of fat-shattering dimension
in terms of number of parameters W

Split the network into two parts: the 1st layer & later layers.
Let X be the input space R”, Y; be the output set of the 1st layer (ex. R¥).

Let F; : X — Y7 be the class of vector valued functions computed by the
1st layer, and G : Y7 — R be the class of functions computed by the
remainder of the network.

Then the set of functions computable by the whole network is

GoFi={gof:geG,fekF}



Bounds of fat-shattering dimension
in terms of number of parameters W

Definition Define the uniform, L., distance between functions h,g € G as

di.(g,h) = sup lg(y) — h(y)l-

lemma 14.3 Let X be a set and (Y1, p) be a metric space. Supp. L >0, Fy is a
class of functions mapping from X to Y7, G is a class of functions mapping from
Y; to R, satisfying Lipschitz condition: for all g € G and all y,z € Yj,

g(y) — &(2)| < Lp(y, 2)-
Fory =(y1, - ,ym) and z = (z1,- -+ , zy) from Y{", let
d°

L (y,2) = lg%xmp(yn z;).

Then,

Noo(, G o F,m) < Xrg%N(s/zL, Filx, dgo)N(s/z, G, de).



Proof of lemma 14.3

Proof of lemma 14.3 Fix x € X™. Supp. that /}1 is an 5y-cover of Filx w.r.t.
d? and G is an 5-cover of G w.rt. tod, . Let

N A

G|f—‘1 = {(é‘(%lL 7@(?m)) F= (f,-- »%m) € ﬁlvg € é}

Then we can show CA§|ﬁ1 is an e-cover of (G o F)|x w.r.t. to ds.
Choose f € F; and g € G, and pick fe I:'l and g € G st

d2(Fl.F) < 57 and di(8:8) < 5.
Then,
12‘2{"7/’('((&),?,-) < 257
and so,
o (st —5(0) <L 5 =5

due to Lipschitz condition, which implies

max |g(f(x)) — 8(f)| < =

1<i<m



Bounds of fat-shattering dimension
in terms of number of parameters W

Consider F computed by a feed-forward real-output multi-layer network, with
following properties:

e [ > 2 layers, with connections only between adjacent layers

o W weights

e For some b > 0, each computation unit maps into [—b, b], and each
computation unit in the 1st layer has non-dicreasing activation function.
dV >0and L > % s.t. for each unit in all but 1st layer, vector w of weight
associated with that unit has ||w||; < V and the unit's activation function
s : R — [—b, b] satisfies Lipschitz condition |s(ay) — s(a2)| < Loy — ap|
for all entries a1, ar € R.

e Assume no threshold, for convenience.

Theorem 14.5 For the class F of functions computed by the network above, if
e < 2b, then
4embW(LV)’)W

Noc (e, F,m) < ( s(LV 1)



Proof of Theorem 14.5 |

Proof of Theorem 14.5 Use lemma 14.3 !l
@ Functions in G satisfy Lipschitz condition.

lemma For every g € G and y1, y» € Y7,
lg(n) — g(y2)l < (LV) My = yalloo-

proof Decompose g = gjo--- o g» and use Lipschitz condition on s.

llgi(v1) — gi(y2)lloe < Lmax|w T (y1 — y2)|
< Lmax{[|w|[1]|y1 — yalloo }
= LV||y1 — yal|oo,

where y; and y» are units in layer J.



Proof of Theorem 14.5 |l
@® Bound on N(e, Filx, d2.).

lemma For x € X™,

)

2 b\ W—W,
N, FAlodz) < (552) 7

e

where W is the number of weights in all but 1st layer.

proof
ForfEFl,wecanwrltef( ):( 1(x), -+, fi(x)) € [ bb]k
Define F1j = {f; : (f1,--- ,fx) € A} Then F1|X C Fialx X -+ X Fplx.

x

= N(e, Filx, d2,) < [] N(e, Fujlx, doo)

Supp. X C R". Since the activation function of each 1st layer unit is
non-decreasing,

2emb\ "
max N(e, Fyj|x, ds) < ( em )
xeXxXm en

due to Thm 11.3, 11.6 and 12.2. Result follows from kn = W — W.



® Bound on N(e, G,d; ).
lemma If e <2band LV > 1,

-1
NG G.dy ) < (2LVWGb(LV)

S(LV-1) )WG
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Bounds of fat-shattering dimension
in terms of number of parameters W

Theorem 14.9 For the class F of functions computed by the network described
above,

fatr(e) < 16W(llog(LV) + 2log(32W) + log(m))

Proof of Theorem 14.9 Use Theorem 14.5 and Theorem 12.10

RECALL

Theorem 12.10 Let F be a set of real-valued functions and let € > 0. Let
d = fatp(e/4). Then for all m > fatg(16¢),

Nao(e, F,m) > Ni(e, F, m) > eftr(16€)/8,



weights!

Key idea is to approximate a network with bounded weights by one with few
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Definition For a subset S of a vector space H, the convex hull of S, co(S) C H,
is defined as

co(S) = {Za,s, NENS,ESa,>OZa,—1}

i=1 i=1

Theorem 14.10 Let F be a vector space with a scalar product and let

[1f|| = /(f,f). Supp. G C F and that for some B > 0, ||g|| < B for all g € G.
Then for all f € co(G), all k €N, and all ¢ > B2 — |||, 3g1,-- ,gk € G

satisfying
Y g-np<s
k pary 1 —

40> «Fr «=)»r «
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Theorem 14.11 Supp. b > 0 and that F is a class of [—b, b]-valued functions
defined on X, and Na(e, F, m) is finite for all m € N and € > 0. Then provided
€1+e <g,

b2
log, Na(e, co(F), m) < [6—2]log2N2(52, F,m)
1
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Proof of Theorem 14.11 |

Proof of Theorem 14.11 Take Na(e2, F, m) = N. Then for any x € X™,
Jep-cover S of Fly s.t. |S] = N.
Define T, C R™ as

k
1
TkZ{EZS,'ZS,' ES}
i=1

Then | T| < NX. Choose any f € co(F) and suppose f = Zle ajf; with o > 0,
Zlea,- =1land f; € F.
Since S is an ep-cover of F|y, EIIA‘l, e ,?, € S st

do(filx, F1) < &2

/
= dg(f|X7ZOz,'?,') < es.

i=1

By Theorem 14.10, Jgy,--- ,8x € S s.t.

1 s — 5. _ b
() &) aifi) < —.
2o <R



By triangle inequality,

K
1
(4 ihflx) <ea+ —.
2(k ;g x) < e Np
Hence, Tk is an (g2 + %)—cover of co(F)|x. Choose k = [g;]
1
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lemma 14.12 If G is a normed vector sapce with induced metric d and F C G,
then

N(e, F,d) = N(Jale, aF, d)
for Ve > 0 and o € R.

lemma 14.13 Suppose F is a class of real-valued functions defined on X, and
the function ¢ : R — R satisfies the Lipschitz condition,

[6(x) = d(y)| < Lix -yl
for all x,y € R. Then,
Na(e,po F,m) < Np(e/L, F, m).
Proof Use the fact

(@0 F)(x) = (¢0g)(X)| < LIf(x) — g(x)|

40> «Fr «=)»r «
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defined on a set X and satisfying

Theorem 14.14 Suppose b > 0 and that f; is a class of [—b, b]-valued functions
L4 F]_ = —F]_

e f; contains the identically zero function
For V > 1, define,

N

N
F:{ZW;f’ :NeN,f; e F1,Z|Wi| <V}
i=1
Then for g1 +e5 < g,

i=1

242
logaNa(e, F,m) < [

. logaNo(e2/V/, Fi, m).
1
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Proof of Theorem 14.14 Due to conditions on Fq,

N N
Z w;fi = Z w;sgn(w;)sgn(w;)f;
i=1 i=1

N wis n(w;)
= Z Wisgmwi) Vsgn(w;)f;
i=1 v
N w;sgn(w;) N w;sgn(w;)
1 1 1 1
- V[ g+ - 3 MLy
= F = Vco(Fy)
Result follows from Theorem 14.11 and lemma 14.12.
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Two corollaries for bound on Ny(-, -, -) of 2-layer neural networks.

Corollary 14.15 Suppose that b > 0 and s : R — [—b, b] is a nondecreasing
function. Let V > 1 and supp. that F is the class of functions from R” to R,

N N

F:{x»—)ZW;s(v,Tx+ vio) +wo: N e N,y ER",V;QGR,ZlW;| <V}
i=1

Thenfor0<e<band m>n+1,

i=0
5V2p%(n+3 4embV
10g2N2(€a Fa m) S 8(2 ) 0g2<

e(n+ 1))
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Proof of Corollary 14.15 Let

Fi = {x s(v. x + vio)}.
Then

2emb

No(e, F, Noo (e, F "
< < | —

2(87 17m) = 00(57 17m) = <€(n+ 1))

form>n+1.

By lemma 14.12, Ny(g, —F1, m) = Na(e, F1, m), so

No(e, FLU — F1U{0,1}, m) < 2No(e, Fi, m) +2
By Theorem 14.14,

V2h?
logaNo(e, Fym) < [

2 |logn <2N2(€, F1,m) + 2)
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For V>1and B>1, let

Corollary 14.16 Suppose that b > 0,L > 0 and s : R — [—b, b| satisfies
|s(a1) — S(Ozz)| < L|a1 — 042| for all a1, € R.

N N
F={d wfi+wo:NeNfieF,) w <V}
i=1
where

i=1

n
i=1

S jul < vy

i=0

n
F = {X — S(Z ViXj + Vo) v, €ER x € [—B, B]n,

Then, for ¢ < Vmin{BL, b},

V312hB
logoNa(e, F, m) < 50(

2
a ) logs(2n + 2).
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Proof of Corollary 14.16 By Theorem 14.14 and lemma 14.13,

V2B2[2
logoNa (e, Fi,m) < |

1logaNa(e2/ VL, GU — GU{0, 1}, m)
€1
V2212

<V Bt 1/og2(2N2(62/VLGm)+2)

V222

B?L
< 2 1logz2(2n + 2)
1

where G ={x— x;:i€{l,--- ,n}},e1+ex >e.
Similarly, if b> 1,

V2b?
loga (e, F m) < [
1

1loga <2N2(52/V, Fi,m) + 2)

fore; +e, <e.

u]
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Let

FOZ{X'_)XI:X:(XIN" aXn)e[_bab]n’ie{lv"’ 7"}} U{Ovl}a

and for i > 1,
N . N
Fi={s)_wif): NeN, f € UtFi, D |w| <V}
j=1 j=1

Thus, F; is the class of functions that can be computed by an /—layer
feed-forward network, in which each unit has sum of magnitude of weights
bounded by V.

Assume s : R — [—b, b] satisfies Lipschitz condition.

Theorem 14.17 For [ > 1,
1.2b
logaNa(e, Fj, m) < 5(?)2’(2 VL) jogy(2n 4 2),

. 1
provided b>1, V > 500 €S VbL.

DA



Theorem 14.19

fatr,(c) < 4(32b )2 (VL) jog(2n + 2)

provided b>1, V > i e <16VbL.
Proof Theorem 14.17 and Theorem 12.10

Theorem 14.18 Suppose b > 1 and s : R — [—b, b] is a non-decreasing
function. Let V > 1 and supp. that

N N
F={xw— Zw,-s(v,-Tx—i- vio) +wo: NeN,v; e R", vjp € ]R,Z|w,-| <V}
i=1 i=0

Then for 0 < e < b,

28bV

fate(e) < 2%(n + 3)( )2 g ( )

Proof Corollary 14.15 and Theorem 12.10
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The first two parts of the book considered the following 3 step approach to
solving a pattern classification problem.

@® Choose a suitable class of functions.
® Gather data

©® Choose a function from the class.
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Model Selection

Theorem 15.1 Let Ny be a 2-layer network with input set X, W parameters, a
linear threshold output unit, and first-layer units with a fixed bounded
piecewise-linear activation function. Let Hy, be the class of functions computed
by Ny . There is a constant ¢ such that the following holds.

Suppose P is a probability distribution on X x {0,1}, and z € Z™ is chosen from
P™. Then if Ly is a SEM algorithm for Hyy, wp at leat 1 — §,

c 1 1/2
erp(Lw(2)) < optp(Hw) + (E<W/og(Wm) + /og(5)>> .
Proof Theorem 8.8, Theorem 4.3, and Thoerem 4.2.

REMARK This result is applicable only if we fix the complexity of our class, W,
before seeing any data.
= Rather, we want that the learner chooses a suitable W after seeing the data.



Model Selection

Theorem 15.2 Let Fy, be class of functions computed by a two-layer network,

k K
Fy = {x+ Z wis(vii x + vig) + wp : k € N,Z lwi| < V1,
i=1 i=0

where V >0, x € R”, and s : R — [—1, 1] is non-decreasing. There is a
constant ¢ such that the following holds.

Fix v € (0,1] and suppose that P is a probability distribution on X x {0,1}, and
that z € Z™ is chosen from P™. Then, if Ly is a large margin SEM algorithm for
Fv, wp at least 1 — 0,

2p 1/2
ern(Lu(z,7)) < opth(Fv) + (5 (L log*(myog( L) + log(5)) )

Proof Thoerem 14.18, Thoerem 13.2, and Thoerem 13.4.

REMARK Increasing y decreases the estimation error term, but may increase the
error term.



We want to choose the complexity parameters so as to minimize the upperbounds
on misclassification probability.

«0)>» «Fr « =)

<

it
v

DA



Model Selection

Let L€ be a learning algorithm that returns h € Uy Hy, corresponding to a pair
(h, W) with h € Hy, that minimizes

N c W N\ 1/2
ér.(h) + (E (W/og(Wm) + /og(?)>) ,
over all values of W € N and h € Hy .

Theorem 15.3 There are constants c, ¢; such that wp at least 1 — §,

erp(L°(2)) < igvf(optp(HW) + (% (W/og(Wm) + /og(%)))lp)‘



Model Selection

Let L€ be a learning algorithm that returns f € Uy Fy corresponding to a triple
(f, V,~) with f € Fy and

2 1/2
1 (€ (L og2tmont ) + 0l Y
& 2(F) + (57 log?(mios () + log () )
within 1/m of its infimum over all values v € (0,1], V € R" and f € Fy.

Thoerem 15.4 There are constants ¢, ¢; such that wp at least 1 — ¢,

erp(L(2)) < %(omg('c‘/) * (;(glog%m)/og(g) + /og(;f;)>)1/2)



e The model selection methods described in this chapter are similar to number

of thechniques that are commonly used by neural network practitioners.
e Thoerem 15.6 — weight decay
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