Definition Let (A, d) be a metric space. Given $W \subset A$ and a positive number ϵ , a subset $C \subset W$ is called a ϵ -cover of W if for any $w \in W$, there is $c \in C$ such that $d(w, c) < \epsilon$.

Definition A ϵ -covering number of W denoted by $\mathcal{N}(\epsilon, W, d)$, is the minimal cardinality of an ϵ -cover of W.

Definition Let F be a set of functions from a domain X and let k be a positive integer. An uniform ϵ -covering number is defined as

$$\mathcal{N}_{\infty}(\epsilon, F, k) = \max\{\mathcal{N}(\epsilon, F_{|x}, d_{\infty}) : x \in X^k\}.$$

Definition 11.1 Let F be a set of real-valued functions mapping from a domain X and suppose that $S = \{x_1, x_2, \ldots, x_m\} \subseteq X$. Then S is pseudo-shattered by F if there are real number r_1, r_2, \ldots, r_m such that for each $b \in \{0, 1\}^m$ there is a function $f_b \in F$ with $\operatorname{sign}(f_b(x_i) - r_i) = b_i$ for $1 \le i \le m$. We say that $r = (r_1, r_2, \ldots, r_m)$ witnesses the shattering.

Definition 11.2 Suppose that F is a set of real-valued functions mapping from a domain X. Then F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that is pseudo-shattered by F. If no such maximum exists, we say that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted Pdim(F).

Definition 11.10 Let *F* be a set of real-valued functions mapping from a domain X and suppose that $S = \{x_1, x_2, \ldots, x_m\} \subseteq X$. Suppose also that γ is a positive real number. Then *S* is γ -shattered by *F* if there are real numbers r_1, r_2, \ldots, r_m such that for each $b \in \{0, 1\}^m$ there is a function $f_b \in F$ with

$$f_b(x_i) \ge r_i + \gamma$$
 if $b_i = 1$, $f_b(x_i) \le r_i - \gamma$ if $b_i = 0$, for $1 \le i \le m$.

Definition 11.11 Suppose that F is a set of real-valued functions mapping from a domain X and that $\gamma > 0$. Then F has γ -dimension d if d is the maximum cardinality of a subset S of X that is γ -shattered by F. If no such maximum exists, we say that F has infinite γ -dimension. The γ -dimension of F is denoted fat_F(γ).

Theorem 11.13 Suppose that F is a set of real-valued functions. Then,

- 1 For all $\gamma > 0$, $fat_F(\gamma) \le Pdim(F)$.
- **2** If a finite set S is pseudo-shattered then there is γ_0 such that for all $\gamma < \gamma_0$, S is γ -shattered.

- **3** The function $fat_F(\gamma)$ is non-increasing with γ .
- Pdim $(F) = \lim_{\gamma \downarrow 0} \operatorname{fat}_{F}(\gamma)$ (where both sides may be infinite).

Neural Network Learning: Theoretical Foundations Chapter 14 and 15

Martin Anthony and Peter L. Bartlett

Gi-Soo Kim September 2 , 2017

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• In analyzing classification learning algorithms for real-valued function classes, it is useful to consider algorithms that, given a sample and a parameter $\gamma > 0$, return hypotheses minimizing the sample error with respect to γ , which is defined as

$$\hat{\mathrm{er}}_{z}^{\gamma}(f) = \frac{1}{m} |\{i : \mathrm{margin}(f(x_{i}), y_{i}) < \gamma\}|$$

where

margin
$$(f(x_i), y_i) = \begin{cases} f(x_i) - 1/2 & \text{if } y_i = 1\\ 1/2 - f(x_i) & \text{if } y_i = 0 \end{cases}$$

Definition 13.1 Suppose that F is a set of real functions defined on the domain X. Then a large margin sample error minimization algorithm (or large margin SEM algorithm) L for F takes as input a margin parameter $\gamma > 0$ and a sample $z \in \bigcup_{m=1}^{\infty} Z^m$, and returns a function from F such that for all $\gamma > 0$, all m, and all $z \in Z^m$,

$$\hat{\operatorname{er}}_{z}^{\gamma}(L(\gamma, z)) = \min_{f \in F} \hat{\operatorname{er}}_{z}^{\gamma}(f).$$

Theorem 13.2 Suppose that *F* is a set of real-valued functions defined on the domain *X* and that *L* is a large margin SEM algorithm for *F*. Suppose that $\epsilon \in (0, 1)$ and $\gamma > 0$. Then given any probability distribution *P* on *Z* for all *m*, we have

 $P^{m}\{\operatorname{er}_{P}(L(\gamma, z)) \geq \operatorname{opt}_{P}^{\gamma}(F) + \epsilon\} \leq 2\mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m)e^{-\epsilon^{m}/72} + e^{-2\epsilon^{2}m/9},$ where $\operatorname{opt}_{P}^{\gamma}(F) = \inf_{f \in F} \operatorname{er}_{P}^{\gamma}(f).$

Theorem 12.2 Let *F* be a set of real-valued functions from a domain *X* to the bounded interval [0, B]. Let *d* be a pseudo-dimension of *F*. Then for any $\epsilon > 0$,

$$\mathcal{N}_{\infty}(\epsilon, F, m) \leq \sum_{i=1}^{d} {m \choose i} \left(\frac{B}{\epsilon}\right)^{i}$$

which is less than $(emB/(\epsilon d))^d$ for $m \ge d$.

Bounding Covering Number with the Fat Shattering Dimension: A general upper bound

Theorem 12.8 Let *F* be a set of functions from a domain *X* to the bounded interval [0, B]. Let $d = fat_F(\epsilon/4)$. Then any $\epsilon > 0$ and for all $m \ge d$

$$\mathcal{N}_{\infty}(\epsilon, F, m) < 2\left(rac{4mB^2}{\epsilon^2}
ight)^{d\log_2(4eBm/(d\epsilon))}$$

Bounding Covering Number with the Fat Shattering Dimension: A general lower bound

Theorem 12.10 Let *F* be a set of real-valued functions and let $\epsilon > 0$. Let $d = \operatorname{fat}_{F}(\epsilon/4)$. Then for all $m \ge \operatorname{fat}_{F}(16\epsilon)$,

 $\mathcal{N}_{\infty}(\epsilon, F, m) \geq \mathcal{N}_{1}(\epsilon, F, m) \geq e^{\operatorname{fat}_{F}(16\epsilon)/8}.$

Theorem 13.4 Suppose that *F* is a set of real-valued functions defined on the domain *X* with finite fat-shattering dimension, and that *L* is a large margin SEM algorithm for *F*. Then *L* is a classification learning algorithm for *F*. Given $\delta \in (0, 1)$ and $\gamma > 0$, suppose $d = fat_{\pi_{\gamma}(F)}(\gamma/8) \ge 1$. Then the estimation error of *L* satisfies

$$\epsilon_L(m,\delta,\gamma) \leq \left[\frac{72}{m} \left\{ d \log_2\left(\frac{32em}{d}\right) \log(128m) + \log\left(\frac{6}{\delta}\right) \right\} \right]^{1/2}$$

Furthermore, the sample complexity of L satisfies, for any $\epsilon \in (0,1)$,

$$m_L(\epsilon, \delta, \gamma) \leq rac{144}{\epsilon^2} \left(27d \log^2 \left(rac{3456d}{\epsilon^2}
ight) + \log \left(rac{6}{\delta}
ight)
ight).$$

Theorem 13.6 If *F* is a set of real-valued functions with finite pseudo-dimension, and *L* is a large margin SEM algorithm for *F*. Let d = Pdim(F). For all $\delta \in (0, 1)$, all *M*, and $\gamma > 0$, its estimation error satisfies

$$\epsilon_L(m,\delta,\gamma) \leq \left[\frac{72}{m}\left\{d\log\left(\frac{8em}{d}\right) + \log\left(\frac{3}{\delta}\right)\right\}\right]^{1/2}$$

14. The Dimensions of Neural Networks

- 1. Pseudo-dimension of neural networks.
- 2. Fat-shattering dimension of neural networks
 - 2.1. bounds in terms of number of parameters W

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

2.2. bounds in terms of size of parameters \boldsymbol{V}

15. Model Selection

outline

14. The Dimensions of Neural Networks

1. Pseudo-dimension of neural networks.

2. Fat-shattering dimension of neural networks

2.1. bounds in terms of number of parameters W

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2.2. bounds in terms of size of parameters V

15. Model Selection

Pseudo-dimension of neural networks

Theorem 14.1 Let N be any neural network with a single real-valued output unit, and form a neural network N' as follows.

The network N' has one extra input unit and one extra computation unit. The extra computation unit is a linear threshold unit receiving input from output unit of N and the new input unit. If H' is the set of $\{0, 1\}$ -value functions computed by N' and F the set of functions computed by N, then

$$Pdim(F) \leq VCdim(H').$$

Proof of Theorem 14.1 Use the fact that $Pdim(F) = VCdim(B_F)$ where

$$B_F = \{(x, y) \mapsto sgn(f(x) - y) : f \in F\}$$

Theorem 14.2 Let F be the set of functions computed by a feed-forward network with W parameters and k computation units, in which each computation unit has the standard sigmoid activation function. Then,

$$Pdim(F) \leq ((W+2)k)^2 + 11(W+2)k\log_2(18(W+2)k^2).$$

RECALL

Theorem 8.13 Let H be the set of functions computed by a feed-forward network with W parameters and k computation units, in which each computation unit other than the output unit has the standard sigmoid activation function (the output unit being a linear threshold unit). Then, provided $m \ge W$,

 $VCdim(H) \leq (Wk)^2 + 11Wk\log_2(18Wk^2)$

- Split the network into two parts: the 1st layer & later layers.
- Let X be the input space \mathbb{R}^n , Y_1 be the output set of the 1st layer (ex. \mathbb{R}^k).
- Let $F_1 : X \longrightarrow Y_1$ be the class of vector valued functions computed by the 1st layer, and $G : Y_1 \longrightarrow \mathbb{R}$ be the class of functions computed by the remainder of the network.
- Then the set of functions computable by the whole network is

$$G \circ F_1 = \{g \circ f : g \in G, f \in F_1\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bounds of fat-shattering dimension in terms of number of parameters W

Definition Define the uniform, L_{∞} distance between functions $h, g \in G$ as

$$d_{L_{\infty}}(g,h) = \sup_{y \in Y_1} |g(y) - h(y)|.$$

lemma 14.3 Let X be a set and (Y_1, ρ) be a metric space. Supp. $L \ge 0$, F_1 is a class of functions mapping from X to Y_1 , G is a class of functions mapping from Y_1 to \mathbb{R} , satisfying Lipschitz condition: for all $g \in G$ and all $y, z \in Y_1$,

$$|g(y)-g(z)| \leq L\rho(y,z).$$

For $y=(y_1,\cdots,y_m)$ and $z=(z_1,\cdots,z_m)$ from Y_1^m , let

$$d^{\rho}_{\infty}(y,z) = \max_{1 \leq i \leq m} \rho(y_i,z_i).$$

Then,

$$N_{\infty}(\varepsilon, G \circ F, m) \leq \max_{x \in X^m} N(\varepsilon/2L, F_1|_x, d_{\infty}^{\rho}) N(\varepsilon/2, G, d_{L_{\infty}}).$$

Proof of lemma 14.3

Proof of lemma 14.3 Fix $x \in X^m$. Supp. that \hat{F}_1 is an $\frac{\varepsilon}{2L}$ -cover of $F_1|_x$ w.r.t. d_{∞}^{ρ} and \hat{G} is an $\frac{\varepsilon}{2}$ -cover of G w.r.t. to $d_{L_{\infty}}$. Let

$$\hat{G}|_{\hat{F}_1}=\{(\hat{g}(\hat{f}_1),\cdots,\hat{g}(\hat{f}_m)):\hat{f}=(\hat{f}_1,\cdots,\hat{f}_m)\in\hat{F}_1,\hat{g}\in\hat{G}\}.$$

Then we can show $\hat{G}|_{\hat{F}_1}$ is an ε -cover of $(G \circ F)|_x$ w.r.t. to d_{∞} . Choose $f \in F_1$ and $g \in G$, and pick $\hat{f} \in \hat{F}_1$ and $\hat{g} \in \hat{G}$ s.t.

$$d^
ho_\infty(f|_x,\hat f)\leq rac{arepsilon}{2L} ext{ and } d_{L_\infty}(g,\hat g)\leq rac{arepsilon}{2}.$$

Then,

$$\max_{1\leq i\leq m}\rho(f(x_i),\hat{f}_i)\leq \frac{\varepsilon}{2L}$$

and so,

$$\max_{1 \le i \le m} \left(g(f(x_i)) - g(\hat{f}_i) \right) \le L \cdot \frac{\varepsilon}{2L} = \frac{\varepsilon}{2}$$

due to Lipschitz condition, which implies

$$\max_{1\leq i\leq m} |g(f(x_i)) - \hat{g}(\hat{f}_i)| \leq \varepsilon.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Consider F computed by a feed-forward real-output multi-layer network, with following properties:

- $l \ge 2$ layers, with connections only between adjacent layers
- W weights
- For some b > 0, each computation unit maps into [-b, b], and each computation unit in the 1st layer has non-dicreasing activation function.
- $\exists V > 0$ and $L > \frac{1}{V}$ s.t. for each unit in all but 1st layer, vector w of weight associated with that unit has $||w||_1 \leq V$ and the unit's activation function $s : \mathbb{R} \longrightarrow [-b, b]$ satisfies Lipschitz condition $|s(\alpha_1) s(\alpha_2)| \leq L|\alpha_1 \alpha_2|$ for all entries $\alpha_1, \alpha_2 \in \mathbb{R}$.
- Assume no threshold, for convenience.

Theorem 14.5 For the class *F* of functions computed by the network above, if $\varepsilon \leq 2b$, then

$$N_{\infty}(\varepsilon, F, m) \leq \left(\frac{4embW(LV)'}{\varepsilon(LV-1)}\right)^{W}.$$

Proof of Theorem 14.5 Use lemma 14.3 !!

1 Functions in *G* satisfy Lipschitz condition.

 $\underline{\mathsf{lemma}} \text{ For every } g \in G \text{ and } y_1, y_2 \in Y_1,$

$$|g(y_1) - g(y_2)| \le (LV)^{l-1} ||y_1 - y_2||_{\infty}.$$

proof Decompose $g = g_1 \circ \cdots \circ g_2$ and use Lipschitz condition on *s*.

$$||g_i(y_1) - g_i(y_2)||_{\infty} \le Lmax|w^T(y_1 - y_2)| \le Lmax\{||w||_1||y_1 - y_2||_{\infty}\} = LV||y_1 - y_2||_{\infty},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

where y_1 and y_2 are units in layer *i*.

Proof of Theorem 14.5 II

2 Bound on $N(\varepsilon, F_1|_x, d_{\infty}^{\rho})$.

<u>lemma</u> For $x \in X^m$,

$$N(\varepsilon, F_1|_x, d_{\infty}^{\rho}) \leq \left(\frac{2emb}{\varepsilon}\right)^{W-W_G},$$

where W_G is the number of weights in all but 1st layer. <u>proof</u> For $f \in F_1$, we can write $f(x) = (f_1(x), \dots, f_k(x)) \in [-b, b]^k$. Define $F_{1,j} = \{f_j : (f_1, \dots, f_k) \in F_1\}$. Then $F_1|_x \subset F_{1,1}|_x \times \dots \times F_{1,k}|_x$. $\Rightarrow N(\varepsilon, F_1|_x, d_\infty^\rho) \leq \prod^k N(\varepsilon, F_{1,j}|_x, d_\infty)$

Supp. $X \subset \mathbb{R}^n$. Since the activation function of each 1st layer unit is non-decreasing,

$$\max_{x \in X^m} \mathsf{N}(\varepsilon, \mathsf{F}_{1,j}|_x, \mathsf{d}_{\infty}) \leq \left(\frac{2emb}{\varepsilon n}\right)^n$$

due to Thm 11.3, 11.6 and 12.2. Result follows from $kn = W - W_G$.

▲□▶ ▲□▼ ▲目▼ ▲目▼ ▲□▼ ● ●

3 Bound on $N(\varepsilon, G, d_{L_{\infty}})$.

 $\underline{\mathsf{lemma}} \ \mathsf{lf} \ \varepsilon \leq 2b \ \mathsf{and} \ \mathsf{LV} > 1,$

$$N(\varepsilon, G, d_{L_{\infty}}) \leq \left(\frac{2LVW_G b(LV)^{l-1}}{\varepsilon(LV-1)}\right)^{W_G}$$

Theorem 14.9 For the class F of functions computed by the network described above,

$$fat_F(\varepsilon) \leq 16W \Big(log(LV) + 2log(32W) + log(\frac{b}{\varepsilon(LV-1)}) \Big)$$

Proof of Theorem 14.9 Use Theorem 14.5 and Theorem 12.10 <u>RECALL</u>

Theorem 12.10 Let F be a set of real-valued functions and let $\epsilon > 0$. Let $d = \operatorname{fat}_{F}(\epsilon/4)$. Then for all $m \geq \operatorname{fat}_{F}(16\epsilon)$,

$$\mathcal{N}_{\infty}(\epsilon, \mathcal{F}, m) \geq \mathcal{N}_{1}(\epsilon, \mathcal{F}, m) \geq e^{\operatorname{fat}_{\mathcal{F}}(16\epsilon)/8}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bounds of fat-shattering dimension in terms of size of parameters V

Key idea is to approximate a network with bounded weights by one with few weights!

Definition For a subset S of a vector space H, the convex hull of S, $co(S) \subset H$, is defined as

$$co(S) = \left\{ \sum_{i=1}^{N} \alpha_i s_i : N \in \mathbb{N}, s_i \in S, \alpha_i > 0, \sum_{i=1}^{N} \alpha_i = 1 \right\}$$

Theorem 14.10 Let F be a vector space with a scalar product and let $||f|| = \sqrt{(f, f)}$. Supp. $G \subset F$ and that for some B > 0, $||g|| \le B$ for all $g \in G$. Then for all $f \in co(G)$, all $k \in \mathbb{N}$, and all $c > B^2 - ||f||^2$, $\exists g_1, \dots, g_k \in G$ satisfying

$$||\frac{1}{k}\sum_{i=1}^{k}g_{i}-f||^{2}\leq \frac{c}{k}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 14.11 Supp. b > 0 and that F is a class of [-b, b]-valued functions defined on X, and $N_2(\varepsilon, F, m)$ is finite for all $m \in \mathbb{N}$ and $\varepsilon > 0$. Then provided $\varepsilon_1 + \varepsilon_2 \le \varepsilon$, $\log_2 N_2(\varepsilon, co(F), m) \le \lceil \frac{b^2}{\varepsilon_1^2} \rceil \log_2 N_2(\varepsilon_2, F, m)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Proof of Theorem 14.11 |

Proof of Theorem 14.11 Take $N_2(\varepsilon_2, F, m) = N$. Then for any $x \in X^m$, $\exists \varepsilon_2$ -cover S of $F|_x$ s.t. |S| = N. Define $T_k \subset \mathbb{R}^m$ as

$$T_k = \{\frac{1}{k}\sum_{i=1}^k s_i : s_i \in S\}.$$

Then $|T_k| \leq N^k$. Choose any $f \in co(F)$ and suppose $f = \sum_{i=1}^l \alpha_i f_i$ with $\alpha_i > 0$, $\sum_{i=1}^l \alpha_i = 1$ and $f_i \in F$. Since S is an ε_2 -cover of $F|_x$, $\exists \hat{f}_1, \dots, \hat{f}_l \in S$ s.t.

$$d_2(f_i|_x, \hat{f}_i) \leq \varepsilon_2.$$

 $\Rightarrow d_2(f|x, \sum_{i=1}^l \alpha_i \hat{f}_i) \leq \varepsilon_2.$

By Theorem 14.10, $\exists g_1, \cdots, g_k \in S$ s.t.

$$d_2(\frac{1}{k}\sum_{i=1}^k g_i, \sum_{i=1}^l \alpha_i \hat{f}_i) \leq \frac{b}{\sqrt{k}}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

By triangle inequality,

$$d_2(rac{1}{k}\sum_{i=1}^k g_i, f|_x) \leq arepsilon_2 + rac{b}{\sqrt{k}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Hence, T_k is an $(\varepsilon_2 + \frac{b}{\sqrt{k}})$ -cover of $co(F)|_{\times}$. Choose $k = \lceil \frac{b^2}{\varepsilon_1^2} \rceil$.

Bounds of fat-shattering dimension in terms of size of parameters V

lemma 14.12 If G is a normed vector sapce with induced metric d and $F \subset G$, then

$$N(\varepsilon, F, d) = N(|\alpha|\varepsilon, \alpha F, d)$$

for $\forall \varepsilon > 0$ and $\alpha \in \mathbb{R}$.

lemma 14.13 Suppose *F* is a class of real-valued functions defined on *X*, and the function $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the Lipschitz condition,

$$|\phi(x) - \phi(y)| \leq L|x - y|$$

for all $x, y \in \mathbb{R}$. Then,

$$N_2(\varepsilon, \phi \circ F, m) \leq N_2(\varepsilon/L, F, m).$$

Proof Use the fact

$$|(\phi \circ f)(x) - (\phi \circ g)(x)| \le L|f(x) - g(x)|$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem 14.14 Suppose b > 0 and that F_1 is a class of [-b, b]-valued functions defined on a set X and satisfying

- $F_1 = -F_1$
- F_1 contains the identically zero function

For $V \geq 1$, define,

$$F = \{\sum_{i=1}^{N} w_i f_i : N \in \mathbb{N}, f_i \in F_1, \sum_{i=1}^{N} |w_i| \le V\}.$$

Then for $\varepsilon_1 + \varepsilon_2 < \varepsilon$,

$$log_2 N_2(\varepsilon, F, m) \leq \lceil \frac{V^2 b^2}{\varepsilon_1^2} \rceil log_2 N_2(\varepsilon_2/V, F_1, m).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Proof of Theorem 14.14 Due to conditions on F_1 ,

$$\sum_{i=1}^{N} w_i f_i = \sum_{i=1}^{N} w_i sgn(w_i) sgn(w_i) f_i$$

=
$$\sum_{i=1}^{N} \frac{w_i sgn(w_i)}{V} V sgn(w_i) f_i$$

=
$$V \Big[\sum_{i=1}^{N} \frac{w_i sgn(w_i)}{V} sgn(w_i) f_i + (1 - \sum_{i=1}^{N} \frac{w_i sgn(w_i)}{V}) 0 \Big]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ● ④ ●

 $\Rightarrow F = Vco(F_1)$ Result follows from Theorem 14.11 and lemma 14.12. Two corollaries for bound on $N_2(\cdot, \cdot, \cdot)$ of 2-layer neural networks.

Corollary 14.15 Suppose that b > 0 and $s : \mathbb{R} \longrightarrow [-b, b]$ is a nondecreasing function. Let $V \ge 1$ and supp. that F is the class of functions from \mathbb{R}^n to \mathbb{R} ,

$$F = \{x \mapsto \sum_{i=1}^{N} w_i s(v_i^T x + v_{i0}) + w_0 : N \in \mathbb{N}, v_i \in \mathbb{R}^n, v_{i0} \in \mathbb{R}, \sum_{i=0}^{N} |w_i| \le V\}$$

Then for $0 < \varepsilon \leq b$ and $m \geq n+1$,

$$\log_2 N_2(\varepsilon, F, m) \leq \frac{5 \mathbf{V}^2 b^2(n+3)}{\varepsilon^2} \log_2 \left(\frac{4 e m b \mathbf{V}}{\varepsilon(n+1)}\right)$$

Proof of Corollary 14.15 Let

$$F_1 = \{ x \mapsto s(v_i^T x + v_{i0}) \}.$$

Then

$$N_2(\varepsilon, F_1, m) \leq N_{\infty}(\varepsilon, F_1, m) \leq \left(\frac{2emb}{\varepsilon(n+1)}\right)^{n+1}$$

for $m \ge n + 1$. By lemma 14.12, $N_2(\varepsilon, -F_1, m) = N_2(\varepsilon, F_1, m)$, so

$$N_2(\varepsilon, \underline{F_1U - F_1U\{0,1\}}, m) \leq 2N_2(\varepsilon, F_1, m) + 2.$$

By Theorem 14.14,

$$log_2 N_2(\varepsilon, F, m) \leq \lceil \frac{V^2 b^2}{\varepsilon_1^2} \rceil log_2 \Big(2N_2(\varepsilon, F_1, m) + 2 \Big)$$

▲□▶ ▲□▼ ▲目▼ ▲目▼ ▲□▼ ● ●

Bounds of fat-shattering dimension in terms of size of parameters V

Corollary 14.16 Suppose that b > 0, L > 0 and $s : \mathbb{R} \longrightarrow [-b, b]$ satisfies $|s(\alpha_1) - s(\alpha_2)| \le L|\alpha_1 - \alpha_2|$ for all $\alpha_1, \alpha_2 \in \mathbb{R}$. For $V \ge 1$ and $B \ge 1$, let

$$F = \{\sum_{i=1}^{N} w_i f_i + w_0 : N \in \mathbb{N}, f_i \in F_1, \sum_{i=1}^{N} |w_i| \le V\}$$

where

$$F_1 = \{x \mapsto s(\sum_{i=1}^n v_i x_i + v_0) : v_i \in \mathbb{R}, x \in [-B, B]^n, \sum_{i=0}^n |v_i| \le V\}$$

Then, for $\varepsilon \leq Vmin\{BL, b\}$,

$$log_2 N_2(\varepsilon, F, m) \leq 50 \Big(\frac{V^3 L^2 bB}{\varepsilon} \Big)^2 log_2(2n+2).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof of Corollary 14.16 By Theorem 14.14 and lemma 14.13,

$$\begin{split} \log_2 N_2(\varepsilon, F_1, m) &\leq \lceil \frac{V^2 B^2 L^2}{\varepsilon_1^2} \rceil \log_2 N_2(\varepsilon_2 / VL, \underline{GU - GU\{0, 1\}}, m) \\ &\leq \lceil \frac{V^2 B^2 L^2}{\varepsilon_1^2} \rceil \log_2 \left(2N_2(\varepsilon_2 / VL, G, m) + 2 \right) \\ &\leq \lceil \frac{V^2 B^2 L^2}{\varepsilon_1^2} \rceil \log_2 (2n+2) \end{split}$$

where $G = \{x \mapsto x_i : i \in \{1, \dots, n\}\}, \varepsilon_1 + \varepsilon_2 \ge \varepsilon$. Similarly, if $b \ge 1$,

$$log_2 N_2(\varepsilon, F, m) \leq \lceil \frac{V^2 b^2}{\varepsilon_1^2} \rceil log_2 \Big(2N_2(\varepsilon_2/V, F_1, m) + 2 \Big)$$

for $\varepsilon_1 + \varepsilon_2 \leq \varepsilon$.

▲ロト ▲暦 ト ▲臣 ト ▲臣 - ○へ⊙

Bounds of fat-shattering dimension in terms of size of parameters V

Let

$$F_0 = \{x \mapsto x_i : x = (x_1, \cdots, x_n) \in [-b, b]^n, i \in \{1, \cdots, n\}\} \ U \ \{0, 1\},\$$

and for $i \geq 1$,

$$F_i = \{s(\sum_{j=1}^N w_j f_j) : N \in \mathbb{N}, f_j \in \bigcup_{k=0}^{i-1} F_k, \sum_{j=1}^N |w_j| \le V\}.$$

Thus, F_l is the class of functions that can be computed by an l-layer feed-forward network, in which each unit has sum of magnitude of weights bounded by V.

Assume $s : \mathbb{R} \longrightarrow [-b, b]$ satisfies Lipschitz condition.

Theorem 14.17 For $l \ge 1$,

$$log_2 N_2(\varepsilon, F_l, m) \leq \frac{1}{2} (\frac{2b}{\varepsilon})^{2l} (2VL)^{l(l+1)} log_2(2n+2),$$

provided $b \ge 1$, $V \ge \frac{1}{2L}$, $\varepsilon \le VbL$.

Bounds of fat-shattering dimension in terms of size of parameters V

Theorem 14.19

$$fat_{F_l}(arepsilon) \leq 4(rac{32b}{arepsilon})^{2l}(2VL)^{l(l+1)}log(2n+2)$$

provided $b \ge 1$, $V \ge \frac{1}{2L}$, $\varepsilon \le 16VbL$.

Proof Theorem 14.17 and Theorem 12.10

Theorem 14.18 Suppose $b \ge 1$ and $s : \mathbb{R} \longrightarrow [-b, b]$ is a non-decreasing function. Let $V \ge 1$ and supp. that

$$F = \{x \mapsto \sum_{i=1}^{N} w_i s(v_i^T x + v_{i0}) + w_0 : N \in \mathbb{N}, v_i \in \mathbb{R}^n, v_{i0} \in \mathbb{R}, \sum_{i=0}^{N} |w_i| \le V\}$$

Then for $0 < \varepsilon \leq b$,

$$fat_F(\varepsilon) \leq 2^{16}(n+3)(\frac{bV}{\varepsilon})^2 log(\frac{2^8bV}{\varepsilon})$$

Proof Corollary 14.15 and Theorem 12.10

14. The Dimensions of Neural Networks

- 1. Pseudo-dimension of neural networks.
- 2. Fat-shattering dimension of neural networks
 - 2.1. bounds in terms of number of parameters W

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

2.2. bounds in terms of size of parameters V

15. Model Selection

The first two parts of the book considered the following 3 step approach to solving a pattern classification problem.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- 1 Choose a suitable class of functions.
- 2 Gather data
- **3** Choose a function from the class.

Theorem 15.1 Let N_W be a 2-layer network with input set X, W parameters, a linear threshold output unit, and first-layer units with a fixed bounded piecewise-linear activation function. Let H_W be the class of functions computed by N_W . There is a constant c such that the following holds. Suppose P is a probability distribution on $X \times \{0, 1\}$, and $z \in Z^m$ is chosen from P^m . Then if L_W is a SEM algorithm for H_W , wp at leat $1 - \delta$,

$$er_P(L_W(z)) < opt_P(H_W) + \Big(rac{c}{m}\Big(W\log(Wm) + log(rac{1}{\delta})\Big)\Big)^{1/2}$$

Proof Theorem 8.8, Theorem 4.3, and Thoerem 4.2.

<u>REMARK</u> This result is applicable only if we fix the complexity of our class, W, before seeing any data.

 \Rightarrow Rather, we want that the learner chooses a suitable W after seeing the data.

Model Selection

Theorem 15.2 Let F_V be class of functions computed by a two-layer network,

$$F_{V} = \{x \mapsto \sum_{i=1}^{k} w_{i} s(v_{i}^{T} x + v_{i0}) + w_{0} : k \in \mathbb{N}, \sum_{i=0}^{k} |w_{i}| \leq V\},\$$

where V > 0, $x \in \mathbb{R}^n$, and $s : \mathbb{R} \longrightarrow [-1, 1]$ is non-decreasing. There is a constant c such that the following holds.

Fix $\gamma \in (0, 1]$ and suppose that P is a probability distribution on $X \times \{0, 1\}$, and that $z \in Z^m$ is chosen from P^m . Then, if L_V is a large margin SEM algorithm for F_V , wp at least $1 - \delta$,

$$er_{P}(L_{V}(z,\gamma)) < opt_{P}^{\gamma}(F_{V}) + \Big(\frac{c}{m}\Big(\frac{V^{2}n}{\gamma^{2}}log^{2}(m)log(\frac{V}{\gamma}) + log(\frac{1}{\delta})\Big)\Big)^{1/2}$$

Proof Thoerem 14.18, Thoerem 13.2, and Thoerem 13.4.

<u>REMARK</u> Increasing γ decreases the estimation error term, but may increase the error term.

We want to choose the complexity parameters so as to minimize the upperbounds on misclassification probability.

Let L^c be a learning algorithm that returns $h \in \bigcup_W H_W$, corresponding to a pair (h, W) with $h \in H_W$, that minimizes

$$\hat{er}_{z}(h) + \left(\frac{c}{m}\left(Wlog(Wm) + log(\frac{W}{\delta})\right)\right)^{1/2},$$

over all values of $W \in \mathbb{N}$ and $h \in H_W$.

Theorem 15.3 There are constants c, c_1 such that wp at least $1 - \delta$,

$$er_P(L^c(z)) < \inf_W \left(opt_P(H_W) + \left(\frac{c_1}{m}\left(Wlog(Wm) + log(\frac{W}{\delta})\right)\right)^{1/2}\right).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let L^c be a learning algorithm that returns $f \in \bigcup_V F_V$ corresponding to a triple (f, V, γ) with $f \in F_V$ and

$$\hat{er}_{z}^{\gamma}(f) + \Big(rac{c}{m}\Big(rac{V^{2}n}{\gamma^{2}}\log^{2}(m)\log(rac{V}{\gamma}) + \log(rac{V}{\gamma\delta})\Big)\Big)^{1/2}$$

within 1/m of its infimum over all values $\gamma \in (0, 1]$, $V \in \mathbb{R}^+$ and $f \in F_V$.

Theorem 15.4 There are constants c, c_1 such that wp at least $1 - \delta$,

$$er_{P}(L^{c}(z)) < \inf_{V,\gamma} \left(opt_{P}^{\gamma}(F_{V}) + \left(\frac{c_{1}}{m} \left(\frac{V^{2}n}{\gamma^{2}} log^{2}(m) log(\frac{V}{\gamma}) + log(\frac{V}{\gamma\delta}) \right) \right)^{1/2} \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• The model selection methods described in this chapter are similar to number of thechniques that are commonly used by neural network practitioners.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• Thoerem 15.6 \longrightarrow weight decay